34 research outputs found

    A QM/MM approach for the study of monolayer-protected gold clusters

    Full text link
    We report the development and implementation of hybrid methods that combine quantum mechanics (QM) with molecular mechanics (MM) to theoretically characterize thiolated gold clusters. We use, as training systems, structures such as Au25(SCH2-R)18 and Au38(SCH2-R)24, which can be readily compared with recent crystallographic data. We envision that such an approach will lead to an accurate description of key structural and electronic signatures at a fraction of the cost of a full quantum chemical treatment. As an example, we demonstrate that calculations of the 1H and 13C NMR shielding constants with our proposed QM/MM model maintain the qualitative features of a full DFT calculation, with an order-of-magnitude increase in computational efficiency.Comment: Journal of Materials Science, 201

    On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters

    Get PDF
    Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system

    First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands

    Get PDF
    Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor

    Early Secreted Antigen ESAT-6 of Mycobacterium tuberculosis Promotes Protective T Helper 17 Cell Responses in a Toll-Like Receptor-2-dependent Manner

    Get PDF
    Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy

    Nuclear Factor-Kappa B Family Member RelB Inhibits Human Immunodeficiency Virus-1 Tat-Induced Tumor Necrosis Factor-Alpha Production

    Get PDF
    Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorder (HAND) is likely neuroinflammatory in origin, believed to be triggered by inflammatory and oxidative stress responses to cytokines and HIV protein gene products such as the HIV transactivator of transcription (Tat). Here we demonstrate increased messenger RNA for nuclear factor-kappa B (NF-κB) family member, transcription factor RelB, in the brain of doxycycline-induced Tat transgenic mice, and increased RelB synthesis in Tat-exposed microglial cells. Since genetic ablation of RelB in mice leads to multi-organ inflammation, we hypothesized that Tat-induced, newly synthesized RelB inhibits cytokine production by microglial cells, possibly through the formation of transcriptionally inactive RelB/RelA complexes. Indeed, tumor necrosis factor-alpha (TNFα) production in monocytes isolated from RelB deficient mice was significantly higher than in monocytes isolated from RelB expressing controls. Moreover, RelB overexpression in microglial cells inhibited Tat-induced TNFα synthesis in a manner that involved transcriptional repression of the TNFα promoter, and increased phosphorylation of RelA at serine 276, a prerequisite for increased RelB/RelA protein interactions. The Rel-homology-domain within RelB was necessary for this interaction. Overexpression of RelA itself, in turn, significantly increased TNFα promoter activity, an effect that was completely blocked by RelB overexpression. We conclude that RelB regulates TNFα cytokine synthesis by competitive interference binding with RelA, which leads to downregulation of TNFα production. Moreover, because Tat activates both RelB and TNFα in microglia, and because Tat induces inflammatory TNFα synthesis via NF-κB, we posit that RelB serves as a cryoprotective, anti-inflammatory, counter-regulatory mechanism for pathogenic NF-κB activation. These findings identify a novel regulatory pathway for controlling HIV-induced microglial activation and cytokine production that may have important therapeutic implications for the management of HAND

    Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76–ADAP

    No full text
    Receptor-stimulated generation of intracellular reactive oxygen species (ROS) modulates signal transduction, although the mechanism(s) is unclear. One potential basis is the reversible oxidation of the active site cysteine of protein tyrosine phosphatases (PTPs). Here, we show that activation of the antigen receptor of T cells (TCR), which induces production of ROS, induces transient inactivation of the SH2 domain-containing PTP, SHP-2, but not the homologous SHP-1. SHP-2 is recruited to the LAT–Gads–SLP-76 complex and directly regulates the phosphorylation of key signaling proteins Vav1 and ADAP. Furthermore, the association of ADAP with the adapter SLP-76 is regulated by SHP-2 in a redox-dependent manner. The data indicate that TCR-mediated ROS generation leads to SHP-2 oxidation, which promotes T-cell adhesion through effects on an SLP-76-dependent signaling pathway to integrin activation

    Intracellular free radical production by peripheral blood T lymphocytes from patients with systemic sclerosis: Role of NADPH oxidase and ERK1/2

    Get PDF
    INTRODUCTION: Abnormal oxidative stress has been described in systemic sclerosis (SSc) and previous works from our laboratory demonstrated an increased generation of reactive oxygen species (ROS) by SSc fibroblasts and monocytes. This study investigated the ability of SSc T lymphocytes to produce ROS, the molecular pathway involved, and the biological effects of ROS on SSc phenotype. METHODS: Peripheral blood T lymphocytes were isolated from serum of healthy controls or SSc patients by negative selection with magnetic beads and activated either with PMA or with magnetic beads coated with anti-CD3 and anti-CD28 antibodies. Intracellular ROS generation was measured using a DCFH-DA assay in a plate reader fluorimeter or by FACS analysis. CD69 expression and cytokine production were analyzed by FACS analysis. Protein expression was studied using immunoblotting techniques and mRNA levels were quantified by real-time PCR. Cell proliferation was carried out using a BrdU incorporation assay. RESULTS: Peripheral blood T lymphocytes from SSc patients showed an increased ROS production compared to T cells from healthy subjects. Since NADPH oxidase complex is involved in oxidative stress in SSc and we found high levels of gp91phox in SSc T cells, SSc T cells were incubated with chemical inhibititors or specific siRNAs against gp91phox. Inhibition of NADPH oxidase partially reverted CD69 activation and proliferation rate increase, and significantly influenced cytokine production and ERK1/2 activation. CONCLUSIONS: SSc T lymphocityes are characterized by high levels of ROS, generated by NADPH oxidase via ERK1/2 phosphorylation, that are essential for cell activation, proliferation, and cytokine production. These data confirm lymphocytes as key cellular players in the pathogenesis of systemic sclerosis and suggest a crucial link between ROS and T cell activation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13075-015-0591-8) contains supplementary material, which is available to authorized users
    corecore